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ABSTRACT: This paper aims at treating a study on Sylow’s theorem of different algebraic structures
as groups; order of a group, subgroups, along with the associated notions of automorphisms group
of the dihedral groups, split extensions of groups and vector spaces arises from the varying
properties of real and complex numbers. We must have used the Sylow’s Theorems of this work
when it’s generalized. Here we discuss possible subgroups of a group in different types of order
which will give us a practical knowledge to see the applications of the Sylow’s theorems. In algebraic
structures, we deal with operations of addition and multiplication and in order structures, those of
greater than, less than and so on. It is through the study of Sylow’s theorem that we realize the
importance of some definitions as like as the exact sequences and split extensions of groups, Sylow
p-subgroup and semi-direct product. Thus it has been found necessary and convenient to study
these structures in detail. In situations, it was found that a given situation satisfies the basic axioms
of structure and having already known the properties of that structure. Finally, we find out possible
subgroups of a group in different types of order for abelian and non-abelian cases.

Keywords: Dihedral Group, Exact Sequences, Split Extensions of Groups, Lagrange’s Theorems,
Sylow p-Subgroup and Sylow’s Theorems.

1. Introduction
It's not true for any number dividing the order of a group; there exist a subgroup of that order. For

example, the group 54 of even permutations on the set {1, 2, 3, 4} has order 12, yet there does not

exist a subgroup of order 6. As usual we can use Lagrange’s Theorem to evaluate subgroups of group
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of different orders such as order 2,4,6,8,9,10,12,...... etc., i.e. whose order not so high (Not higher

order groups). But it is not possible to evaluate subgroups of higher order group as like as
30, 35,40, 45,50,.....etc by using Lagrange’s Theorems. For this case, applying P-Sylow’s Theorems

we can easily evaluate all possible subgroups of any higher order groups.The Sylow’s theorems are
very important part of finite group theory and the finite simple groups [1, 3]. Here at present, we
discussed subgroups of a group in different types of order by using Sylow’s theorem where
subgroups of a groups of order 30 and 42 by using Sylow’s theorem [4]. The order of sylow’s p-

subgroup of a finite group G is P", where nthe multiplicity of p in the order of is G and any
subgroup of order p" is a Sylow p-subgroup of G .

2. Preliminaries
Dihedral group:A dihedral group is the group of symmetries of a regular polygon, which includes

rotations and reflections. Dihedral groups are among the simplest examples of finite groups, and
they play an important role in group theory, geometry, and chemistry. It's denoted by D,

Definition of p-group:Any finite group G with O(G) =p"™ where pis a prime number and m is a

positive integer is called a p-group.

Example: The group G with O(G) =9 =3% is a 3-group.

Definition of Sylow p-subgroup:

Suppose G is a finite group of order p™ N, where p is not a divisor of n. A subgroup H of G is said to
be a Sylow p-subgroup if
. o(H)=p".

ii. p™ is a divisor of o ( G ), whereas pm+l

is not a divisor of o ( G ).

Index of a group:
Let G be a group. Let H be a subgroup of G.
The number of distinct left (or right) cosets of H in G is called index of H in G and is denoted by

[G:H]orby ig(H)=0(G)/0o(H)
Sylow’s First Theorem [5]:
Let G be a finite group and p be a prime number. If m is the largest non-negative integer such that
p™ is a divisor of o (G), then G has a subgroup of order p™.
Sylow’s second theorem:
Let G be a finite group and let p be a prime number such that p is a divisor of o (G) Then, all

sylow p-subgroups of G are conjugates of one another.
Sylow’s third theorem:

Let G be a finite group and p be a prime number such that p| o (G) Then the number of sylow p-
subgroups is of the form 1+ mp, where m is some non-negative integer.

Sylow’s Fourth Theorem:

The number of Sylow p-subgroups of a finite group is congruent to 1(mod p).

Sylow’s Fifth Theorem:
The number of Sylow p-subgroups of a finite group is a divisor of their common index.
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Automorphisms group of the dihedral group D4:

let D, = {e, X, X%, X%, y, yX, yx, yx3} with the defining relation X* =y =e, y 'xy=Xx", be
the dihedral group of order 8.

Now, the conjugate classes of D4 are:{e}, {XZ }, {X, X3 }, {y, VX, yx2, yx3}.

So, D, /{e, x? }; D, to a group of order 4. So, D, has 4 inner automorphisms one of which is the
identity. Then, let the other 3 inner automorphisms be «, £,  .Now, if X is fixed by « then

ale)=e, a(x)=x and aly)=y, yx, yx?, or yx*.Butaly)zY, forif a(y)=Yy thena = Id,
which is not possible. Then, let a(y):yx2 and hence a(yx)za(y)a(x)z yX3 and therefore,
a’=1d .Next, if y is fixed by B then ﬂ(e)ze, ﬁ(y)zy and B(x)=x"

B~ By)B(x)= Y and = 1. hen 7(e)=e and )=y and(x)=x", ()=
and 7° =1d .Hence, we have y° = %= a’=1d and also we have o= Ba=y and ar=ya.

Therefore inner AUt(D4)={|d, a, p, ﬂa}ECZ x C, with a’=p°=1d and af = Ba.

2

Now, we consider the mapping f : D, — D, With f(6)=e and f(x)=xor x3.So, let f(X)=X
and assume that g(X)=0( f(X)then g(X)=Ol(X)=X and g(y);t x’ for x2 is a central element and
hence g(y)=y, yX, yx*, or yx® .

If g(y) =Y, theng=Id, and hence g(y);ty

If g(y)=yx? then g = and hence g(y)=yx®.

it g(y)=yx then g(yx)=yx* and g*=1d.

Then, we have, g =g " with g* = #°=1d ,and also ygy=g ', with g* = y*=1d .
Therefore, Aut(D,)= {3, 9} with g*=5?=1d and g 'gB=g".

Automorphisms group of the dihedral group D;:

Let D :{e,x,x2,x3,x“,x5’,y,yx,yxz,yx3,yx4,yx5}

With defining relation X° = y* =€ and Y 'Xy = X", be a dihedral group of order 12.

Now, the conjugate classes are: {E}, {X, Xs}, {XZ,X4}, {Xs}, {y, yXZ, yx“}, { VX, yx3, yX5 }

So, Ds/{E, x® }E D to a group of order 6. Then Dy has 6 inner automorphisms one of which is the
identity. Let the other inner automorphisms be Y, Z,U,V,T .Now, if X isfixedby Y then

Y(e)= e, Z(X)z Xand Y(y)= yx* and hence Y (yx)= yx°.Then Y = Id . Next, if y is fixed by Z
then Z(e)=e, Z(y)=y,and Z(x)=x"and Z(yx)=yx™" and then Z? = Id. Next, if yx is

fixed by U then U(e)ze, U(yx): YX, and U(X)= X and U(y)= yx?. Lastly, if yX’is fixed by
T then T(e): e, T(yx5)= yx® and T(x)=Xx"and T(yx)=yx® andthen T2 =Id , and hence
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wehave, Y3 =72 =U?=V?®*=T2 =Id and by calculationwe have, Y2 =V, TU =V =Z7T,

UT =Y =TZ andhence ZYZ =Y, U VU =V, TYT =Y . Therefore, inner
Aut(D,)={Z,Y}=D, =S, with ZYZ =Y and Y: =Z% =Id .

Now, consider the mapping S : Dy — Dy

Let S(e)=¢ then S(X)=X or x° and solet S(x)=x° and put M =US then
M (x)=US(x)=U(x®)=x

Now, M(y)# x* for x° is a central element.

if M(y)=y then M =Id and hence M(y)#y

If M(y)=yx* then M =U and hence M(y)# yx*
If M(y)=yx*then M =Y and hence M(y)# yx*

if M(y)=yX then M(yx)=yx® and M® = Id .Now, MZ = ZM®, MT =TM° and
MU =UM?®, Aut(D,)={M,Z}=D, with M® =22 =1d and Z*MZ =M *.

3. Result and Discussion

Here, we discuss a Study of Sylow’s theorem with all possible subgroups of a group in different

types of order
for abelian and non-abelian cases.

ALL GROUP OF ORDER 4
Abelian Case:

Let G be a group of order 4.

1. If G has an element of order 4, then G = C4, order 4 of a cyclic group, i. e. C4 = {e, a, a’ , a3} with

a‘= €, the identity element of C4 .

2.1f G has no element of order 4 but G has an element of order 2(2divides4 ), let X € G be an element

of order 2 and let Gl be the group generated by X € G then Gl < G and assume that there is an

element y € G such that Y %Gl but y2 € G, and let G2 be the group generated by y then the

only possible case is that y° = €, the identity element of G. Hence, G = G,G, and G, (G, =€ and

so G=G, xG,.

Non-Abelian Case:
Let G be a group of order 4 then G cannot be non-abelian.
ALL GROUP OF ORDER 6 [6]

Abelian Case
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Let G be a group of order 6

1. If G has an element of order 6 then G = C, order 6 of a cyclic group, i.e. C, = {e, a,a’,a®,a’, as}

with a® = e, the identity element of C;.
2. If G has no element of order 6 but G has an element of order 2 ( 2 divides 6), Let X be an element

of order 2 and X€G and let G, be the group generated by X, then G, € G and assume that
3 yeGs.t.ygG,. But y* €G andlet G,be a group generated by y. If y* =€ then G =G,G,
and G,NG, =e =G =G, xG, which s not possible. So y* # € and y* € G, then y* =X, so
y4 = €. But G has no element of order 4 (4 does not divide 6). Hence there exists no element y € G
s.t.yeG,; vy’ eG,.

3. Assume that G has an element of order 3 (3 divides 6) and let z be such an element .let G3 be the
group generated by zthen if G =G,G; and G, (1G; =€ then G =G, xG, = C, for3and 2 and 3
are relatively prime. So, there is an abelian group of order6s.t. G=C, =C, xC,

Non-Abelian Case

Let G be a group of order 6.

1. If G has no element of order 6. Assume that G has an element of order 3and let X € G and X is of
order 3 then [G : Gl] =2, there Gl is the group generated by X and Gl is normal subgroup of G and
so3 yeGs.t.Yég Gl; y2 € G, .Now if y2 = X then y6 =x°=¢e,the identity of G which is not
possible. Similarly y2 # Xfl, there the only possible cases y2 = €. Hence, we have y2 =x*=e and
then G = {e, X, X2, Y, yX, yxz} where Y 'Xy=¢€ or X,X?, Y, yX, yX*. If y'Xy =€ then X =e thisis
not possible. If y’lxy = X then xy = yx which is an abelian case, this is not to be considered under
non-abelian case.

If y’lxy =Y thenXy= y2 = X =Y, this is not possible.

If y’lxy: yX then Xy = y2x is not possible.

If y’lxy= X’ then Xy = yX2 = yx’l this is only possible case.

Note that x> =e = x® = x .

So, G= {e, X, X, Y, YX, yx2} with defining relation: x® = y2 =e and y’lxy= X and
G =S, = D, where S; = Symmetric group on three symbols and D, is called the dihedral group

of order 6.

ALL GROUP OF ORDER 8

Abelian Case

If G is abelian then there are three possibilities.
Let G be a group of order 8.
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1. If G has an element of order 8. Then G = C; order 8 of a cyclic group, i. e.

G= {e,a,az,a3,a4,a5,a5,a7} witha® = e, the identity of G. S0 G = C,.
If G has no element of order 8, but G does have an element of order 4. Every non-identity element of

G has order 2, now (ii) Leta € G, a is of order 4. Then, since (a) c G, thenthereisanelementb e G
,be(a)fb? =e then G=(a)b) and (a)N(b)={e}. Thus, G=C, xC, It b = e thenb? € (a)
, for otherwise |(b) =4 and (a)ﬂ(b)z{e} and|G| >16. Hence, b? e(a) and since‘bz‘ =2,
b? =a?.Nowlet c=bha™. Then C ¢ (a) and ¢* =b%a? =e.Thus, G= (a)(c); C, xC,.

We know that, if G # {e} be a finite group all of whose elements different from identity have order
p a prime, then for integer 21, G= A x A, x ... ... ... x A, where A =C,, The cyclic group of
order P, fori=1,2, ... ... ... ...,n and |G| = pn .So, If G has order 2 ( a prime), then G according by

G=C,xC,xC,, where2isaprimeand 2° =8.
Non-abelian Case

We assume that G has no element of order 8, for if did, this would imply G = C8 which is an abelian
group. Also, not every element of G, g € G, g # e, can have order 2. For if these are the case, G
would be abelian group which has already been considered. Thus G has an element of order 4, but
none of order 8. Leta € G, a is of order 4. Then [G . (a)] =2 and (a) is normal in G.

Hence G /(a) has order 2, and so there exist an element b€ G and b ¢ (a) andb’ € (a)
If b2 = a then since a has order 4, b would have order 8 which is a contradiction.
Similarly b? = a%. Hence (i) b2 =e or (ii)b? =a?

1. 1f b? = e then, We may express all elements of G in terms of a and b which are as follows:
{e,a,a*,a% b,ba,ba’ ba’}.Here, we need to determine the product of ba . Since b ¢ (a),

ba ¢ (a) If ba=e thena =e, is a contradiction. If ba = ab, then G is abelian, another
contradiction. If ba = a®b then bab™ = a? .But ‘babfl‘ =4 while‘az‘ = 2, again contradiction.
Thus the only possibility that can holdba = a°b .

Hence G has 2 generators @ andD, wherea* =e, b? =e andba=a’b=bab™ =a™. So

G ={e,a,a’,a’,b,ab,a’b,a’b} with a* =b2 =e and ba = bab™ which is isomorphic to D,,a
dihedral group of order 8.

2.1f b? = a? then again G = {¢,a,a%,a°,b,ab,a’h,a’h},

Now as in (i) we must determine the product ba . Exactly as in one, we find that we must

have ba =a’b, thatis bab™ =a™.
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We know that G is generated by a and b ,where b? =a?, a* =e and bab™ = a™.This group is

called the quaternion group of order 8, Which is not isomorphic to D4 .

This group can also be with the group say, Qg = {1,—1, L=, j,— ], k,—k} with 1,-1€ Z and the

remaining symbols are distinct and satisfy: ij =k, jk =i,ki= j and ji=—k,kj=—i,ik =—]
and i = j2 =k?=-1, where i, j,k are unit vectors.

Finally we may list all the group of order.
1. C,, C,xC,, C,xC, xC,
2. Non-abelian D, and Q,

ALL GROUP OF ORDER 10 [7]
Abelian Case:

Let G be a group of order 10.

1. If G has an element of order 10thenG =C,.

2. If G has no element of order 10 but G has an element of order 5 (5 divides 10) and let X € G be of

order 5 and suppose that G1 be the group generated by X . Then G, = C,, order 5 of a cyclic group, i.

e. G = {e,X,XZ,Xs,X4}With x> =e.Assumethat 3 ye G s.t. Y ¢G, and y® € G, and let G, be

the group generated by y then the possible cases are: y2 =e, y2 =X, y2 = X2, y2 = X3, y2 =x*
2 10 _ . .

If y* =X then Yy =€ this is not possible

If y2 = X which is not possible

If y2 = X which is not possible

If y2 = x* which is not possible

If y* =¢ isthe only possible case, then G = G,G, and G, NG, =e

ThenG =C, xC, =C,,, for 2 and 5 are relatively prime.

Non-abelian Case

G can never have an element of order 10, for if it has an element of order 10 then G = C,; which is
an abelian group. Then assume that G has an element of order 5 and Let X € G and let Gl be group

generated by x, then |G X G1| =2 =G, isanormal subgroupof G.So, 3 ye G s.t. Y ¢ G;;

y2 eG,. If y2 = X then, it implies that y is of order 10 which is not possible.
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Hence, ¥ # X and y2 =X, y2 # X?, y2 # x* and hence y2 =€ is the only possible case. Then

G =G, xG, and G, [1G, =€ Where G, is the group generated by y and

G= {e, X, X2, X3, X%y, yx, yx%, yx, yx“}.

Now Y 'xy=e or X,x*,x%,x*,y, yx, yx?, yx%, yx*. y'Xy = X then G is abelian, so it is not be
considered. Also the other case namely y’lxy: X% or x® or x* or yXx or yX2 or yX3 or yX4 are
not possible. So, the only possible case is that y’lxy =X and hence G = D5, the Dihedral group
of order 10 and G = {e, X, X2, x3,x*,y, yx, yx®, yx“} with defining relations X* = y* =¢,
yixy=x".

Note: Abelian group-1 and Non-abelian group-1

ALL GROUP OF ORDER 12

Abelian Case

Let G be a group of order 12. If G has an element of order 12, then G=C,, =C, xC;, (4 and 3 are

relatively prime).If G has no element of order 12 but G has an element of 6(6 divides 12).

Let X € G be an element of order 6 and let Gl be the group generated by X then Gl <G and
assumethat 3 yeGs.t.Y €& G1 but y €G, and let G2 be the group generated by y, then the
only possible case is that Y =€ and hence G =G,G, and G, (NG, =€ then G =C, xC, and

since 3 and 2 are relatively prime then we have G =C; xC, = C, xC, xC,.
Non-Abelian Case

In this case, the group G can not have an element of order 12 for if it has then G = C,, whichis an
abelian group. Assume that G has an element of order 6 and let Gl be the group generated by

X € G where X is of order 6 then [G : G1]= 2 and G, is normal subgroup of G. Then 3 y € G s. t.
Y ¢ Gl but y2 € G, . Now, if y2 = X then y12 =g, this is not possible.

Hence y2 # X and also y2 # X° and if y6 =€ and hence Y € G1 which is not also possible.

Hence y2 # X% and also y2 = Xx*.

Then the only possibilities are y2 =¢e and y2 =x°.

1If y2 =€ then the elements of G in terms of X and Y can be put as
G= {e, X, X2, X3, X4, X5, Y, YX, yXZ, yx3, yx4, yXS}Now let us determine the product xy. Since
y¢ G1 then XY & Gl. If xy =y then X=e€ , whichis not possible and hence Xy # Y. If xy = yx

then G is abelian and hence XY # YX.If Xy = yX2 then y’lxy = Xx* which is not possible for the
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order of y’lxy is 6 and the order of x”is 3 and hence Xy # yX2 . Similarly we have that Xy # yX3

and Xy = yx*.

Now, the only possibility is that Xy = yX5 which gives that y’lxy =x° =x". Hence, G is an non

abelian group of order 12 generated by the elements X and y with the following defining relations:

x° = y2 =e, y’lxy =X, Thisis exactly the dihedral group of order 12 which is denoted by D6 .

2. If y2 = x* then G is an other non abelian group of order 12generated by X and y with the
following defining relations: X° = y2 =e, y2 =x* and y’lxy = X" This group is called the
dicyclic group of order 12 and is denoted by A . Further investigation for non-abelian group of order
12, we have 12 = 22.3 and both 2 and 3 are primes. Let G has no element of order 4 and it has only

elements of order 2. Then the order of a 2-Sylow subgroupis 4and S, =C, xC, and a®> =b* =e
where 52 is the 2-Sylow subgroup and ab =ba and let ¢® = e and let G be generated by a,b,c.
Let G1 be the group generated by the element c. Put d = cac™ which has order 2 and assume that
d €S, and c isinvariant. Then a*ca=c', b 'cb =c¥, if t = q =1 then G is abelian, so put
t=g=1,andhencet=q=2then a’ca=c’*=c*and b’cbh=c™,so
(ba)"c(ba)=ab'cba=a"(b'ch)a=a'c'a=c. Put ba=f then f 'cf =C andhence
cf = fc.So, G= D, xC, = Dy, which has already been found. If C is not invariant, then by the
third Sylow’s theorem, S, the 3-Sylow subgroup is generated by c and has 4 conjugates. Now

4= [G “N(S )J and hence [N(S,): {ef] =3 and so N(S,)=C(S,)=C, and hence by Burnside’s
theorem, there is an invariant normal complement C2 X Cz. Now ¢ *ac = a'b such thatt, g=01,
then we have if t =1, g =0 then ctac =aandhenceca=ac. Put X =ac =ca then we have

x® = e and hence we have the cyclic group C, generated by X .Now we have to determine the
product XD, since b & Cy then sois Xb. If Xb=DhX, we have G = C, xC, which is impossible for G

is non abelian and so Xb#bX. If xb = bx? then bxb=b?x? = x?, where (b2 = e), which is not
possible for x* is of order 2 and bXb is of order 6, hence xb = bx?. If xb=bx? then bxb = x?
which is not possible for x* is of order 2 and bXD is of order 6 and hence xb = bx®. If xb=bx*
then bxb = x*, which is also impossible. If xb =bx> then bxb= X" is the only possibility.

Hence, we have bxb = x™ with b?> =x°® =e then G = D¢ which has already been found. Ift =1,

g=1, then c*ac = ab and hence c(ab)= acC then the element of G is in terms of a,c,ab, where
G = fe,a,(ab),c,c? ca,c?a, cb, c?b, b, c(ab), c*(ab)}

Now, let us put

a=(12)34), b=(13)24), c =(123)
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Then we have Ca =(234),ch = (142), ab = (14)23), c?a = (314),c%b = (234), c(ab) = (134),
cz(ab) = (124), which are the elements of 54 )

Then the group generated by a, b, c will be the non-abelian group of order 12 which is denoted by

A4 ( alternating group on four symbols) elements are as follows:
A, ={1),(12)(34),(13)(24),(14)(23),(123),(132),(124), (142), (143), (234134 243)}

The group is called Alternating group on four symbols and is a subgroup of 54 .Hence G = A4
REMARKS:

The groups of order 12may be listed as follows:

Abelian: 1. C,, 2.C,xC,
Non-Abelian: 1. D, 2. A 3. A
ALL GROUP OF ORDER 20 [8]

Abelian Case

Let G be a group of order 20.

1. If G has an element of order 20 then G =C,, and since 5 and 4 are relatively prime then
G=C,xC,.

2. If G has no element of order 20 but it has an element X of order 10. Let X € G be of order 10 and
let the group generated by X be Gl then G1 C G and let there be an element y € G such that
y G, but y’ e G, and also let G, be the group generated by y . Now, if y’ =€ then G = GG,
and G, NG, =€ and hence G = G, xG, = C,; xC, . Again, if y* # ¢ then y* € G, for otherwise
the order of y is 10 and y2 =x* then let zZ = yx’l but Z €61 and 2° = y2X72 =¢. Thus
G =G,G; =C,, xC, where G; is the group generated by Z . Let us analyses C x C, with may be
C ><(C2 ><C2) with ¢’ =y* =z =e and yz = zy.

Now, the generator of C x (C2 ><C2) has order 10 and the generator of C,; xC, has order 10 and
so, we have G=C,;xC, =C, x(C, xC, ).

Non-Abelian Case

In this case G can not have an element of order 20 for if it has then G is an element of order 10. Let

X €G and X is of order 10 and let G1 be the group generated by X then [G : Gl]: 2 and hence
Gl is an normal subgroup of G. Then there exists an element g € G suchthat Y & G1 and y2 eG,
.Now, if y2 = X then y20 = x" =& which is not possible for G does not have an element of order
20 and hence y2 # X and similarly, we have y2 = x°, y2 # X' and y2 # X°. Hence the possible
cases are y2 =e,y2 =x?, y2 =x*, y2 = X5,y2 =x® and y2 =x°.
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1.0f y2 = € then all the elements of G can be expressed in term of X and y in the following

G ={e,x,x2,x3,x4,x5,x6,x7,x8,x9,y, VX, yxz,yx3,yx4,yx5,yx6,yx7,yx8,yx9}

Now, let us determine the product xy Since Y & G1 then XY & G1 If xy =y then X=e whichis
not possible and hence XY # Y If xy = yx then G is abelian which not possible and hence XY # yX.
If Xy= yX2 then y’lxy = Xx* which is not, for x2 is of order 10. Hence, Xy # yX2 Similarly,

xy = yx*, xy = yx>, xy = yx°,and Xy # yx® And hence the only possible case is that Xy = yx°.If
Xy = yX9 then y’lxy = X" and 50 G is non-abilian group of order 20 and G is generated by X and
y with the defining relations: X = y2 =e, y’lxy =x'. Thisis exactly the dihedral group of
order 20 and is denoted by D, .

2.1Fy? =2, then Y2 =y ty =y %%y = (y x)xy)=(y *x)yx )= y Hyx et =x2.
which is not possible by (1).

3.0F y? =X then y? = y'y?y = y'x*y = x° this is not possible
4.1F y* =X then Yy = y'y?y = y'x°y = X this is not possible

Hence, G is a non-abelian group generated by X and y with the following defining relations x** = e

, y2 = X° and y’lxy =X"*. This group is called dicyclic group of order 20 and is denoted by A, .
5.1If y2 =X° then y2 = y’lx"y = X" this is not possible

6. If y2 = x° then y2 = y’lxgy =X’ this is not possible

FURTHER INVESTIGATION FOR

NON-ABELIAN GROUP OF ORDER 20

Let G has no element of order 10 but an element X of order 5 and hence 5-Sylow subgroup is
isomorphic to C,Assume that there is another element y of order4and y € G, Then the

elements of G may be expressed as:

G-= {e,X,XZ,X3,X4, Vi V2 3, vk Y3, v, v yAx, VA3, v, v X, y3x4}

Now, let us determine the product xy. Here XY # YX for if Xy = yx then is abelian which is not
possible and also XY # YX for xy = y gives X =€ which is not possible again Xy = yX2 gives that

y’lxy = X* which is possible for y’lxy is of order 5 and also x? is of order 5. Hence, G is a non-

abelian group of order 20 with no element of order 10 and G is generated by the elements X and y
with the following defining relations: X° = y4 =€ and y’lxy = X? This group is isomorphicto a

subgroup of 55, the symmetric group on 5 symbols.

doi.org/10.53272/icrrd 111 ICRRD Qual. Ind. Res. J. 2022, 3(2), 101-
115



ICRRD Quiality Index Research Journal m

If we put X = (12345), y= (1523), then the group G = G, (a subgroup of S;)

(1),(12345),(13524),(14253),(15432),(1523), (12)35), (1325),(2453),(1254), (1342), (1435), (13)(45),

5~ {(14)(23), (15)(24),(25)(34), (14)(52),(1534), (2354), (1243)

NOTE: 65 has only inner automorphism and identity is the centre, So it is called a complete group.

REMARKS: The group of order 20 can be listed as follows:

Abelian: 1. C,, 2. C, xC,
Non-Abelian: 1. D, 2. Ay, 3. G
ALL GROUP OF ORDER 28

(a) Abelian Case

We can list the Abelian groups of order 28 as follows: i. G=C,, ii. G=C,xC,

(b) Non — Abelian Case

We keep in mind that 28=22.7

2- Sylow Subgroups:

The number x of 2-Sylow subgroup of a group G of order 28 is x =1(mod ulo2), where x=1, 7.
1, 2-Sylow subgroup:

It implies that there is a proper normal subgroup in G which may be called N of order 2. Therefore,
N=C,

If N = C,, then the sequence of group extension {e}—> N—->G->C,—> {e}

But, (1, 14) =1, so the extension splits.

Now, Y :C,, — Aut(C,) = Id and (14, 1) =1, Where Y is a constant homomorphism and the

relation is given by b™ab =a™ which is a commutative case. So, we exclude this case.
7, 2- Sylow subgroup:

The normalized of 2-sylow subgroup N (Sz) must have an invariant subgroup of order 2.

Now, the order of N(S,) =4 andso, N(S,)=C,or C, xC, or D,but N(S,) = D, because

none of them can have an invariant subgroup of order 2.

The possibilitiesare i.  N(S,)=C, 1. N(S,)=C,xC,, and so by Burnside’s Theorem

normal 2-complement exists. This will be abelian, so we exclude this case.
7-Sylow Subgroups:
The number x of 7-sylow subgroups of a group G of order 28 is X =1 (mod ulo 7), where x=1
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1, 7-Sylow Subgroups:

Any D, is a normal subgroup of G. The group extension is {e}—> D, >G—>H-> {e} and H is of
order 4. But (7, 4) =1, so the extension splits. Andso Y :H — Aut(D,) = D,

(a) Let H=D, = D, xD, then KerY contains D, and it commutes with D,, D, ,...
This gives that G =C, x N where N is a non-abelian group of order 14, so that N = D, .
Therefore G = D,,.

(b) Let H=C, and C, has an element of order 7,50 Y(C, ) has order 1.

If Y(Cz) has order 1 then, G = D, x C, which is a non-abelian group of order 28.
Remarks: We can list the different groups of order 28 as follows:
Non-abeliangroups: 1) G=D,,. 2) G=z=D, xC,

ALL GROUP OF ORDER 50

(a) Abelian Case

We can list the Abelian groups of order 50 as follows: i. G=C, ii. G=C,xC,
(b) Non — Abelian Case

We keep in mind that 50=2.52

2- Sylow Subgroups:

The number x of 2-Sylow subgroup of a group G of order 28 is X =1(mod ulo2), where x=1, 5, 25.
1, 2-Sylow subgroup:

It implies that there is a proper normal subgroup in G which may be called N of order 2. Therefore,
N=C,

If N = C,, then the sequence of group extension e}>N->G—>C, > e}

But, (1, 25) =1, so the extension splits. Now, Y :C,. — Aut(C,) = Id and (25, 1) =1, Where Y is a

constant homomorphism and the relation is given by b™ab =a" which is a commutative case. So,

we exclude this case.
5, 2- Sylow subgroup:

The normalized of 2-sylow subgroup N (32) must have an invariant subgroup of order 2.

Now, the order of N(S,) =4 andso, N(S,)=C,or C,xC, or D,but N(S,) = D, because

none of them can have an invariant subgroup of order 2.
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The possibilitiesare i.  N(S,)=C, ii. N(S,)=C, xC,. andso by Burnside’s Theorem

normal 2-complement exists. This will be abelian, so we exclude this case.
25, 2-Sylow subgroups:
(a)The normalized of 2-sylow subgroup N(Sz) must have an invariant subgroup of order 2.

(b) Now, the normal 2 components N of order 25 gives that N = G25 , then the group extension is

given by

{e}—> D, >G—>H—> {e} Where H =D, . But (2, 25)=1, so the extension splits.

(b.1).1f H =D, then Y :D, — Aut(D,;)= D, and Y(D, ) = {e}

(b.1.1).If Y(Gz ) = {e}' then G=D; X Dys,which is a non-abelian group of order 50

5-Sylow Subgroups

The number X of 5-Sylow subgroups of a group G of order 50 is X = 1(mod U|O5); where X = 1.
1, 5-Sylow Subgroups:

Any C, is a normal subgroup of G.

The group extension is {€} = C, — G — H — {e} and H is of order 10.

But (5,10) #1, so the extension splitsandso Y : H — Aut(C5)E C,.

(a) Let H =C,, = C, xC, then KerY contains C, and it does not commutes with C;, C, . So, it

has no non-abelian group of order 50.

(b) Let H = A, and A, has no quotient group of order 2 or 4, so Y(A4)= {e} and G=C, x A,
which has no non- abelian group of order 50.

(c) Let H = D, and D; has an element of order 5, s0 Y(D; ) has order 2 or 1

(c.1) If Y(DS) has order 1 then G = C, x D, which has no non-abelian group of order 50

(c.2) If Y(DS) has order 2, then KerY =C; and a° =c¢’ =d?,d'ad=a™, c'ac=a™,
d*cd =c™. So, a group generated by a and cis D,.. Therefore G = D, is a non- abelian group

Remarks
We can list the different groups of order 28 as follows:
Non-abelian groups: 1) G=D,. 2) G=C,xD, 3) G=z=C,xD,

4. Conclusion
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The Lagrange’s theorem seems somewhat limited. It seems intuitively clear that any order of
subgroups of a group in use of the Sylow’s theorems. We hope that this work will be useful for
group theory related to subgroups with abelian and non-abelian groups. Our results are possible
subgroups of a group in different types of order by using Sylow’s theorem. This result has found an
extensive use in probability, statistics, information theory and geometrics etc. Then all expected
results in this paper will help us to understand better solution of complicated order.
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